БЫСТРЫЕ МЕТОДЫ ВЫЧИСЛЕНИЯ МЕТРИКИ ДЛЯ ОЦЕНКИ ДВИЖЕНИЯ

Автор:

ст. преподаватель кафедры АиСУ ОмГУПСа Захаренко Елена Игоревна

Научный руководитель: к.т.н., доцент кафедры АиСУ ОмГУПСа Альтман Евгений Анатольевич

ОЦЕНКА ДВИЖЕНИЯ

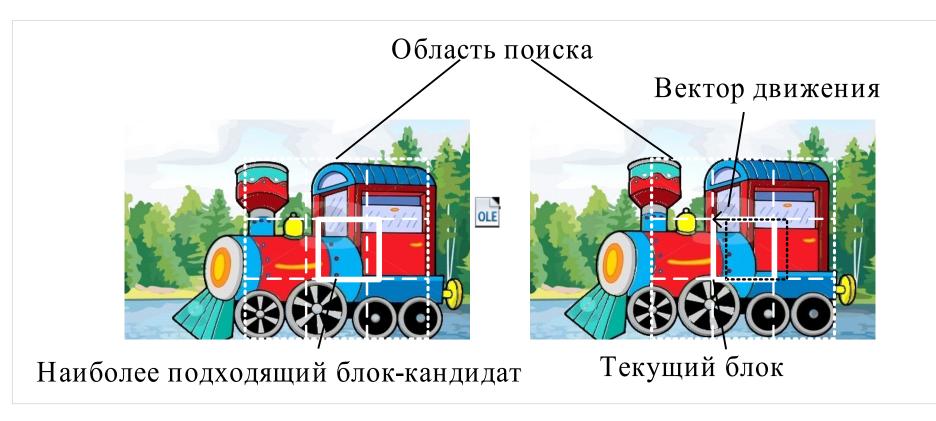


Рисунок 1 — Схема работы алгоритма блочного сопоставления блоков

ОЦЕНКА ДВИЖЕНИЯ ПОЛНЫМ ПЕРЕБОРОМ

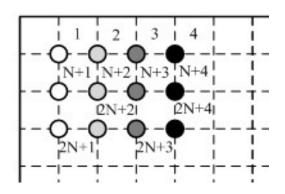


Рисунок 2. Оценка движения методом полного перебора FS

Таблица 1. Вычислительная сложность полного перебора относительно быстрого алгоритма

32×32	25·N
16×16	$8\cdot N$
8×8	2,6· <i>N</i>

где N – количество операций быстрого алгоритма

БЫСТРЫЕ МЕТОДЫ ОЦЕНКИ ДВИЖЕНИЯ

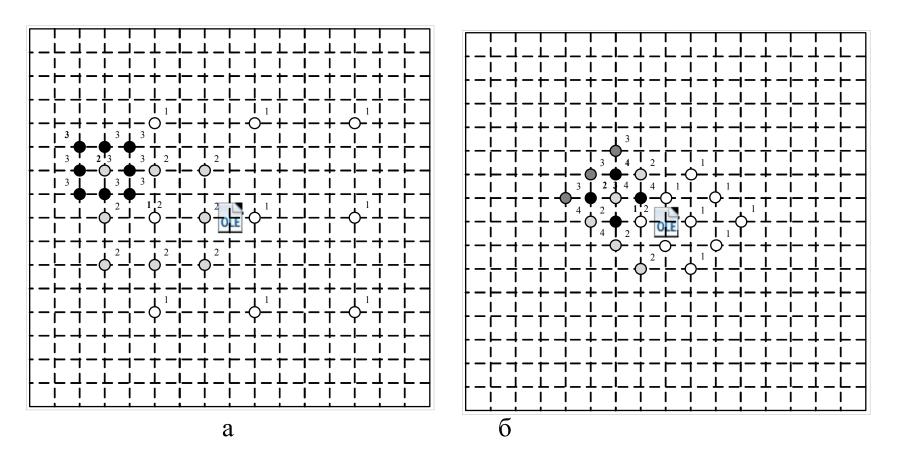


Рисунок 3. Оценка движения быстрыми методами: a — трехшаговым TTS и б — бриллиантовым DS поисками

ОБЗОР КРИТЕРИЕВ СОПОСТАВЛЕНИЯ БЛОКОВ

1. Суммарная квадратичная ошибка (Sum of Square Difference – SSD):

$$SSD(i,j) = \mathbf{e}_{y=0}^{N_h-1} \mathbf{e}_{x=0}^{N_w-1} (B(x,y) - S(x+i,y+j))^2,$$
1)

2. Суммарная абсолютная разница (Sum of Absolute Difference – SAD):

$$SAD(i,j) = \mathbf{e}_{y=0}^{N_h-1} \mathbf{e}_{x=0}^{N_w-1} |B(x,y) - S(x+i,y+j)|,$$
2)

где i, j – координаты вектора движения относительно текущего блока, $i \in (-Sw/2; Sw/2), j \in (-Sh/2; Sh/2);$

x, y – координаты точки блока; $Nw \times Nh$ – размер блока;

B — текущий блок; S — ссылочный блок размером $Sw \times Sh$.

СОКРАЩЕНИЕ ВЫЧИСЛИТЕЛЬНОЙ СЛОЖНОСТИ АЛГОРИТМА ОЦЕНКИ ДВИЖЕНИЯ

Формулу SSD можно разложить на три слагаемых:

$$SSD1 = \sum_{y=0}^{N_h - 1} \sum_{x=0}^{N_w - 1} B^2(x, y);$$
(3)

$$SSD2 = -\mathbf{e}_{y=0}^{N_h-1} \mathbf{e}_{x=0}^{N_w-1} B(x, y) S(x+i, y+j);$$
(4)

$$SSD3 = \mathbf{e}_{y=0}^{N_h-1} \mathbf{e}_{x=0}^{N_w-1} (x+i, y+j),$$
(5)

где i, j — координаты вектора движения относительно текущего блока, $i \in (-Vw/2; Vw/2), j \in (-Vh/2; Vh/2)$, где $Vw \times Vh$ — размер области, в которой может быть расположен искомый блок на ссылочном кадре; x, y — координаты точки текущего блока $B; Nw \times Nh$ — размер блока B; S — ссылочная область размером $Sw \times Sh$, где Sw = Nw + Vw, Sh = Nh + Vh.

НОВЫЙ РЕКУРСИВНЫЙ ДЛГОРИТМ ВЫЧИСЛЕНИЯ ДВУМЕРНОЙ КОРРЕЛЯЦИИ

Новый метод разложения на 12 корреляций:

$$X_{i,j} = \breve{\mathbf{y}}\hat{x}_{i,j}, \, \hat{x}_{i,j+2}, \dots \, \hat{x}_{i,j+N-2} \, \breve{\mathbf{y}}^T_{i,j} = \breve{\mathbf{y}}\hat{y}_{i,j}, \, \hat{y}_{i,j+2}, \dots \, \hat{y}_{i,j+N-2} \, \breve{\mathbf{y}}^T_{i,j}$$
 (6)

где
$$\hat{x}_{i,j} = [x_{i,j}, x_{i,j+N-2}], \quad \hat{y}_{i,j} = [y_{i,j}, y_{i,j+N-2}].$$

где подстрочный индекс 0 сигнала X означает четную позицию сигнала x, 1 — нечетную, $i, j \in [0; N/2]$

НОВЫЙ РЕКУРСИВНЫЙ ₄_ЛГОРИТМ ВЫЧИСЛЕНИЯ ДВУМЕРНОЙ КОРРЕЛЯЦИИ

где
$$A_0 = X_{00} - X_{1,0}$$
, $A_1 = X_{01} - X_{1,1}$, $B0_{i,j} = Y_{0,j} - Y_{i+1,j}$, $B1_{i,j} = Y_{i,j+1} - Y_{i+1,j+1}$,
$$c_{i+1,j} = X_{0,0}Y_{i+1,j} + X_{0,1}Y_{i+1,j+1} + X_{1,0}Y_{i+2,j} + X_{1,1}Y_{i+2,j+1}$$
,
$$c_{i+1,j+1} = X_{0,0}Y_{i+1,j+1} + X_{0,1}Y_{i+1,j+2} + X_{1,0}Y_{i+2,j+1} + X_{1,1}Y_{i+2,j+2}$$
.

$$(X_{0,0} - X_{1,0})(Y_{i,j} - Y_{i+1,j}); (X_{0,1} - X_{1,1})(Y_{i,j+1} - Y_{i+1,j+1}); (X_{0,0} - X_{1,0})(Y_{i,j+1} - Y_{i+1,j+1}); (X_{0,1} - X_{1,1})(Y_{i,j} - Y_{i+1,j}); (X_{0,0}Y_{i+1,j}; X_{0,1}Y_{i+1,j+1}; X_{1,0}Y_{i+2,j}; X_{1,1}Y_{i+2,j+1}; (Y_{i,j} - Y_{i+1,j}); (Y_{i,j} - Y_{i+1,j}$$

ИССЛЕДОВАНИЕ МЕТОДОВ ВЫЧИСЛЕНИЯ ДВУМЕРНОЙ КОРРЕЛЯЦИИ

Таблица 2. Вычислительная сложность алгоритмов двумерной корреляции сигнала B размером $N \times N$ и сигнала S размером $(2N-1) \times (2N-1)$ без учета MAC-операций

	Количество арифметических операций				
N	2D Fast 9	2D Fast 12	2D Full	2D через 1D Fast	2D через 1D Full
2	28	28	28	28	28
4	501	485	496	544	496
8	6 106	6 709	8 128	8 384	8 128
16	65 631	86 189	130 816	116 224	130 816
32	666 556	1 073 533	2 096 128	1 522 688	2 096 128
64	6 565 473	13 170 845	33 550 336	19 308 544	33 550 336

Таблица 3. Вычислительная сложность алгоритмов двумерной корреляции сигнала B размером $N \times N$ и сигнала S размером $(2N-1) \times (2N-1)$ с учетом MAC-операций

	Количество арифметических операций				
N	2D Fast 9	2D Fast 12	2D Full	2D через 1D Fast	2D через 1D Full
2	20	20	16	16	18
4	377	365	256	400	268
8	4 502	5 029	4 096	7 296	4 152
16	47 147	64 013	65 536	107 776	65 776
32	467 528	791 101	1 048 576	1 456 128	1 049 568
64	4 512 269	9 650 717	16 777 216	18 780 160	16 781 248

ИССЛЕДОВАНИЕ КОМБИНИРОВАННОГО МАТЕМАТИЧЕСКОГО МЕТОДА ВЫЧИСЛЕНИЯ ДВУМЕРНОЙ КОРРЕЛЯЦИИ

п от сажжести метода полного вычисления Процент от сложности метода полного вычисления

 \mathbf{a}

Рисунок 4. Сравнение вычислительной сложности методов корреляции для блока размером $N \times N$ и области поиска $(3N-1) \times (3N-1)$: а — без учета MAC-операций; б — с учетом MAC-операций

ИССЛЕДОВАНИЕ ВЫЧИСЛИТЕЛЬНОЙ СЛОЖНОСТИ МЕТРИКИ SSD ДЛЯ ОЦЕКИ ДВИЖЕНИЯ ПОЛНЫМ ПЕРЕБОРОМ

Рисунок 5. Сравнение вычислительной сложности метрики SSD с применением нового алгоритма относительно самого вычислительно эффективного алгоритма из известных ранее для областей поиска $(2N-1)\times(2N-1)$ и $(3N-1)\times(3N-1)$